2010

"

• •

••

621.314.58 31.264.5			:	,
/ 2010.40 .	,	: ; ?		•
			«	-

. IV 2004 « -

•

,

. .

-

:

,

;

,

(

(

:

. 3)

•

;

-4

;

. 1, -

 $u_{d\alpha}$

π

. 2.

(),(,) - $\vartheta_2 = \pi (.2,)$

 ϑ_3

,

3π

2

2π

ı}

2

,

 ϑ_4

 $\vartheta_2 - \vartheta_3$,

2.

,

(,)

1.

и_d.

,

•

$$U_{d} = \frac{1}{\pi} \int_{\alpha}^{\pi} \sqrt{2} U_{2} \sin \vartheta d \vartheta = \frac{\sqrt{2}}{\pi} U_{2} \left(1 + \cos \alpha\right).$$
(1)
(1) 2, -

$$U_{d} = U_{d0} \frac{1 + \cos \alpha}{2},$$
 (2)

$$U_{d0} = \frac{2\sqrt{2}}{\pi}U_2 = 0,9U_2 - U_d = 0.$$

:

(2).
$$U_d = f(),$$
 (2), -

$$_{\rm max} = 180^{\circ}$$
 (. 2,).

,

U . -

-

< 90°

$$U_{\perp} = 2\sqrt{2}U_2 \; .$$

$$U = \sqrt{2}U_{2} \sin \alpha.$$
 (3)
(3), =90° U -
U :
:

$$I_{d} = \frac{U_{d}}{R_{d}} = \frac{U_{d0}}{R_{d}} \left[\frac{1 + \cos \alpha}{2} \right].$$

$$I_{\perp} = I_{d} / 2. \qquad (4)$$

$$(I = I_{2})$$

:

$$I = I_2 = \sqrt{\frac{1}{2\pi} \int_{\alpha}^{\pi} i^2 d\vartheta} = I \quad k_f = \frac{I_d}{2} k_f, \quad (5)$$
:

 k_f –

•

 i_1

$$k_{f} = \frac{2\pi}{\sqrt{2}} \frac{\sqrt{\frac{1}{\pi} \left(\frac{\pi}{2} - \frac{\alpha}{2} + \frac{1}{4}\sin 2\alpha\right)}}{1 + \cos \alpha}.$$
 (6)
(5) (6),

. 2, , -

•

•

$$i_2$$
 :
 $i_1 = i / k$.

$$I_{1} = \sqrt{\frac{1}{2\pi}} \int_{0}^{2\pi} i_{1}^{2} d\vartheta = \sqrt{\frac{1}{2\pi}} \left(2\int_{\alpha}^{\pi} \frac{i^{2}}{k^{2}} d\vartheta \right) = \frac{\sqrt{2}}{k} \sqrt{\frac{1}{2\pi}} \int_{\alpha}^{\pi} i^{2} d\vartheta ,$$

$$I_{1} \frac{\sqrt{2}}{k} I = \frac{\sqrt{2}}{k} I_{2}, \qquad (7)$$

$$= \frac{U_{1}}{U_{2}} - \qquad .$$

-

k

 $(K . 2,)) - L_d = \infty.$ $L_d = \infty.$ $1, \quad \vartheta_1 = \alpha ($ $\vartheta_3 = \pi + \alpha, \quad -$

2.
$$u_d = 0 - ; \pi - (\pi + \alpha)$$

$$L_d$$
.

•

$$U_{d} = \frac{1}{\pi} \int_{\alpha}^{\pi + \alpha} \sqrt{2} U_{2} \sin \vartheta d \vartheta.$$

$$U_{d} = U_{d0} \cos \alpha.$$
(8),
(8),
(8),

,

:

-

 $U_d = 0$ - $U_d = 0$ - $U_d = 0$ - $U_d = 0$ - $U_d = 0$ - $U_d = 0$

$$U_{d} \quad .$$

$$1 \quad .2, \quad .$$

$$\vartheta = 0 - \alpha \qquad 2, \quad 1$$

$$U_{2} \qquad (.$$

$$.2, \quad .).$$

$$\vartheta = \alpha - (\pi + \alpha) \qquad 1$$

$$. \quad \vartheta_{3} = \pi + \alpha \qquad 2, \quad .$$

$$\vartheta_{3} = \pi + \alpha \qquad 2, \quad .$$

$$1 \quad .$$

$$\vartheta_{3} = \pi + \alpha \qquad 2, \quad .$$

$$U_{.max} = \sqrt{2}U_{2} = 2\sqrt{2}U_{2} .$$

$$U_{.max} = \sqrt{2}U_{2} = 2\sqrt{2}U_{2} .$$

$$U_{.max} = \sqrt{2}U_{2} = 2\sqrt{2}U_{2} .$$

$$U_{.max} = \sqrt{2}U_{2} \sin \alpha .$$

$$I_{d} = U_{d} / R_{d} .$$

 $L_d = \infty$

180°.

,

•

)

 $\phi_1 = \alpha$. $i_{1(1)}$

. 2,),

,

(. . 2,

_

-

-

-

_

φ₁,

•

 I_d

(.

 $\cos \phi_1$

,

 i_1 ,

0

 L_d ,

 $\sqcup i$

. 3, .

,

.3, .

 $\frac{\sqrt{2}\pi}{\vartheta_{4}\vartheta}$

ΰ

 $\overrightarrow{\vartheta}$

 $\overrightarrow{\vartheta}$

4 V

(),

,

 $l_{1(1)}$

 L_d . . 3,). ϑ_2 (. 3,) , $i_d \vartheta_1 - \vartheta_2 ($ 1.

2.3.

$$I_{\perp} = \frac{I_d}{2} \frac{\pi - \alpha}{\pi}.$$

$$I_{\perp} = I_2 = \frac{I_d}{\sqrt{2}} \sqrt{\frac{\pi - \alpha}{\pi}}.$$
(9)

-

$$I_1 = \frac{I_d}{k} \sqrt{\frac{\pi - \alpha}{\pi}}.$$
 (10)

$$I_0 = I_d \alpha / \pi,$$

$$I_0 = I_d \sqrt{\alpha / \pi}.$$

,

•

,

•

(*i* i_2).

. 4.

$$i_{2}$$

$$i_{1}. . . 4,$$

$$u .$$

$$U_{d} = \frac{1}{T} \int_{0}^{\pi} u_{d} dt = \frac{2\sqrt{2}}{\pi} U_{2} = 0,9U_{2} ,$$

$$U_{\perp} = \sqrt{2}U_{2} = 1,41U_{2} .$$

$$I_{\perp} = I_{d} / 2, I_{\perp} = \frac{\pi}{4} I_{d} .$$

$$I_{2} = \frac{\pi}{2\sqrt{2}} I_{d}, I_{1} = \frac{1}{k} \frac{\pi}{2\sqrt{2}} I_{d} .$$

$$P'_{d} = \frac{1}{2\pi} \int_{0}^{2\pi} u_{d} i_{d} d\vartheta = U_{2} I_{2} ,$$

_

_

:

$$S = S_1 = S_2 = U_2 I_2 = P'_d$$
.

$$k = 1; k_U = \pi / 2; k_i = \pi / 4; k_i = 1 / 2.$$

•

, , ,

$$(L_d = \infty).$$

= 0.

.

$$L_{d}, \qquad 180^{\circ}(\ldots, 4, \cdot).$$

$$I = I_{d}/2; I = I_{d}/\sqrt{2}.$$

$$(\ldots, 4, \cdot).$$

$$I_{2} = I_{d}; I_{1} = I_{d}/k.$$

$$S_{0} = S_{1} = S_{2} = \frac{\pi}{2\sqrt{2}}P_{di} = 1,11P_{di}.$$

$$k = \frac{\pi}{2\sqrt{2}}; k_{U} = \frac{\pi}{2}; k_{1} = \frac{1}{\sqrt{2}}; k_{I} = \frac{1}{2}.$$

$$k = \frac{\pi}{2\sqrt{2}}; k_{U} = \frac{\pi}{2}; k_{1} = \frac{1}{\sqrt{2}}; k_{I} = \frac{1}{2}.$$

$$\frac{\vartheta_{1} - \vartheta_{2}}{\vartheta_{2}}, \qquad 0$$

$$\frac{\vartheta_{2} - \vartheta_{3}}{(\vartheta_{3} - \vartheta_{4})}, \qquad (u_{d} = i_{d})$$

$$= 60^{\circ} \qquad .5, \qquad u_{B}$$

. 5.

(–)

(–)

-

$$R_{B}(R_{B} > R_{d}). , ... 4, , ... 4, .$$

 $L_d = \infty$.

$$(\qquad \vartheta_3).$$

$$(\qquad . \qquad .5,)$$

_

_

:

$$U_{-} = \sqrt{2}U_{2} \sin \alpha$$
.
(*i*₁ *i*₂)
. 5, . *i*₁

$$I_1 \quad I_2$$

 $I_1 = I_d/k \; ; \; I_2 = I_d.$

2.5.

3

).

. 6.

. 6,

-

19

- i_d 2, 3 (), (*u*_d . 6, $\vartheta_3 = \pi + \alpha$, 4). 3 4, $u_d = u_2$. 4 3, _ $(\vartheta_4 = 2\pi).$ 3 ($\begin{array}{c} 2 \\ \Delta \vartheta = \alpha \ . \end{array}$ 4 , (. . 6,) , _ •
 - $(\vartheta = 0, \pi)$

-

-

$$(\pi + \alpha; 2\pi + \alpha), \ldots \lambda = \pi + \alpha.$$

$$\lambda = \pi - \alpha \, . \qquad . \quad 6, \quad -$$

$$I_{\perp} = \frac{I_d}{2} \frac{\pi - \alpha}{\pi}; I_{\perp} = \frac{I_d}{\sqrt{2}} \sqrt{1 - \frac{\alpha}{\pi}}.$$
$$I_{\perp} = \frac{I_d}{2} \frac{\pi + \alpha}{\pi}; I_{\perp} = \frac{I_d}{\sqrt{2}} \sqrt{1 + \frac{\alpha}{\pi}}.$$
$$I_2 = I_d \sqrt{1 - \frac{\alpha}{\pi}}.$$
$$I_1 = \frac{I_d}{k} \sqrt{1 - \frac{\alpha}{\pi}}.$$

(

,

,

-.7,.

2.6.

,

.

,

•

,

•

(. 2.2

, . .

),

_

,

,

•

,

,

),

,

,

,

 I_{μ}

,

,

,

 L_{μ}

 $e_1 e_2.$ $0 - \vartheta_1 (. 8,)$ 1

_

_

,

 ϑ_1

1

2.

(11)

•

i

(

).
$$i$$

 i_{2}
 i_{2}
 i_{1}
 i_{1}
 i_{1}
 i_{2}
 i_{2}
 i_{2}
 i_{2}
 i_{2}
 i_{3}
 i_{2}
 i_{4}
 i_{2}
 i_{4}
 i_{2}
 i_{4}
 i_{5}
 i_{1}
 i_{2}
 i_{1}
 i_{1}
 i_{2}
 i_{1}
 i_{1}
 i_{1}
 i_{2}
 i_{1}
 i_{1}
 i_{2}
 i_{1}
 i_{1}
 i_{2}
 i_{1}
 i_{2}
 i_{1}
 $i_$

•

-

$$, , + (..., 8,). \\ : -i_{2} , \\ i_{1} = i , I_{d} , \\ (12) i_{1} = i = I_{d} , = \frac{\vartheta = \gamma}{X_{s}} [\cos \alpha - \cos(\alpha + \gamma)].$$
(14)

.

$$\cos\alpha - \cos(\alpha + \gamma) = \frac{I_d X_s}{\sqrt{2}U_2},$$
(15)

•

$$1 - \cos \gamma_0 = \frac{I_d X_s}{\sqrt{2}U_2},\tag{16}$$

$$\frac{\cos\alpha - \cos(\alpha + \gamma)}{1 - \cos\gamma_0} = 1; \qquad (17)$$

,

,

(17) :

$$\gamma = \arccos(\cos \alpha + \cos \gamma_0 - 1) - \alpha$$
. (18)
(18), .9.

. 8, ,

-

,

 u_d ,

-

(15)

(15)

,

,

_

•

,

(16),

-

_

_

-

_

-

:

$$\Delta U_{x} = \frac{1}{\pi} \int_{\alpha}^{\alpha+\gamma} \sqrt{2}U_{2} \quad \sin \vartheta d\vartheta = \frac{\sqrt{2}U_{2}}{\pi} [\cos \alpha - \cos(\alpha + \gamma)].$$
(15),

-

:

•

$$\Delta U_x = \frac{I_d X_s}{\pi}.$$
 (19)

:

 i_1

(19) ,

$$U_d = U_{d0} \cos \alpha - \frac{I_d X_s}{\pi}.$$

1.

 i_1

,

•

. 8,

 i_1

 $i_1 = I_d \ / \ k \ .$

• •

 i_1, i_{B1}, i_{B2} .

,

():
$$i_1 w_1 = i_{B1} w_2 - i_{B2} w_2 = w_2 (i_{B1} - i_{B2}),$$

:

$$i_1 = \frac{w_2(i_{B1} - i_{B2})}{w_1} = \frac{1}{k}(i_{B1} - i_{B2}).$$
 (20)
(20) . 8, .

(20)

,

,

= 0.

,

•

,

,

•

, :

$$i = i_{1} + i_{2},$$

 $i_{1} = i_{2} = i/2.$ (21)

-

_

•

$$e_{2} = \sqrt{2}U_{2} \sin(\vartheta + \alpha)$$

$$X_{S} = L_{S}:$$

$$i = \frac{\sqrt{2}U_{2}}{X_{S}} [\cos \alpha - \cos(\alpha + \vartheta)].$$

$$i_{1} \quad i_{2} \qquad (21)$$

$$i_{2} = i_{4} = i_{1} = \frac{\sqrt{2}U_{2}}{2X_{s}} [\cos\alpha - \cos(\alpha + \vartheta)], \qquad (22)$$

$$i_{1} = i_{3} = I_{d} - i_{1} = I_{d} - \frac{\sqrt{2U_{2}}}{2X_{s}} [\cos\alpha - \cos(\alpha + \vartheta)]. \quad (23)$$
(23),

$$i_{B1} \qquad (i_{B1} = 0; \ \vartheta = \gamma):$$

$$\cos \alpha - \cos(\alpha + \gamma) = \frac{2I_d X_s}{\sqrt{2}U_2}. \qquad (24)$$

. 10,

,

. 10,

(22) (23) , -
$$i_2$$
 , 10, -

. 10,

:

$$i_2 = i_{B4} - i_{B1} = i_{B2} - i_{B3}.$$
 (25)
(25) (22) (23),

$$i_{2} = -I_{d} + \frac{\sqrt{2}U_{2}}{X_{s}} [\cos \alpha - \cos(\alpha + \vartheta)].$$

$$\vartheta = \alpha \quad i_{2} = -I_{d}, \text{ a } \qquad \vartheta = \alpha + \gamma \quad i_{2} = +I_{d}, \qquad -$$

$$\begin{array}{ccc}
-I_d & +I_d \\
& I_d \\
\end{array} \qquad \qquad i_2 \\
0
\end{array}$$

 i_1

. 10, .

:

,

,

,

 $i_1 = i_2 / k_{\rm o}.$

:

 i_1

-

 U_x ,

,

,

$$\Delta U_{x} = \frac{1}{\pi} \int_{\alpha}^{\alpha+\gamma} u_{d} d\vartheta = \frac{\sqrt{2}U_{2}}{\pi} [\cos \alpha - \cos(\alpha + \gamma)]. \quad (26)$$

$$(26) [\cos \alpha - \cos(\alpha + \gamma)] \qquad (24),$$

$$\Delta U_{x} = 2I_{d}X_{s}/\pi.$$

$$U_{d} = U_{d0} \cos \alpha - 2I_{d}X_{s} / \pi$$
.
(2) . 10, .

. 11.

$$U_{d\alpha} = \frac{1}{\pi} \int_{\Psi}^{\Psi+\lambda} u_{d\alpha} d\vartheta = \frac{1}{\pi} \int_{\Psi}^{\Psi+\lambda} (e_2 - e_{Xd}) d\vartheta = \frac{1}{\pi} \int_{\Psi}^{\Psi+\lambda} e_2 d\vartheta =$$
(27)
$$= \frac{1}{\pi} \int_{\Psi}^{\Psi+\lambda} \sqrt{2} E_2 \sin \vartheta d\vartheta = \frac{\sqrt{2} E_2}{\pi} [\cos \Psi - \cos(\Psi + \lambda)] = f_1(\Psi, \lambda),$$

$$= \cdot \cdot \left(\alpha, \frac{X_a + X_d}{R_d} \right),$$

$$: \cdot \cdot \cdot \left(X_a + X_d \right) \frac{di_a}{d\vartheta} + i_a R_d = \sqrt{2} E_2 \sin \vartheta.$$

$$i_a = i_a + i_a = \frac{\sqrt{2}}{2} \sum_{Z_d} \sin(\vartheta - \varphi) + A e^{\frac{\vartheta - \varphi}{\Theta + \varphi}},$$
(28)
$$A = \frac{\sqrt{2} E_2}{z_d} \sin(\Psi - \varphi) + A,$$

$$A = -\frac{\sqrt{2} E_2}{z_d} \sin(\Psi - \varphi),$$

$$i_a = \frac{\sqrt{2} E_2}{z_d} \sin(\vartheta - \varphi) - \frac{\sqrt{2} E_2}{z_d} \sin(\Psi - \varphi) e^{\frac{\vartheta - \varphi}{\Theta + \varphi}},$$
(29)

,

_

$$z_d = \sqrt{(X_a + X_d)^2 + R_d^2}; \ \phi = \operatorname{arctg} \frac{X_a + X_d}{R_d}; \ \tau = \frac{X_a + X_d}{R_d}.$$

$$\lambda \qquad (29),$$

$$i_{a}|_{\vartheta=\psi+\lambda} = 0,$$

$$\frac{\sqrt{2}E_{2}}{z_{d}} \left[\sin(\psi+\lambda-\phi) - \sin(\psi-\phi)e^{\frac{\vartheta-\phi}{\omega\tau}} \right] = 0. \qquad (30)$$

$$(30) \qquad \lambda. \qquad .12$$

•

-

•

$$= \text{const:}$$
1) $\lambda, (-) < \lambda_{1} < ;$
2) $U_{d (1)}$ (27);
3) ($X_{a} + X_{d}$)/ R_{d} ,
 $\lambda_{1};$
4) R_{d1} .3
 $(X_{a} + X_{d})/R_{d}$ X_{a} $X_{d};$
5)
 $I_{d(1)} = U_{d\alpha(1)} / R_{d1};$
6) $U_{d (1)} I_{d(1)}$;
7) $\lambda_{2},$

. 12.

(27)
$$\lambda =$$

-

-

-

$$U_{d\alpha} = \frac{\sqrt{2}E_2}{\pi} \left[\cos\psi - \cos(\psi + \pi)\right] = \frac{2\sqrt{2}E_2}{\pi} \cos\psi = E_{d0}\cos\psi.$$
 (31)
. 11, , , -

$$\psi = \phi = \operatorname{arctg}\left(\frac{X_a + X_d}{R_d}\right) .$$

$$R_d = \frac{X_a + X_d}{\operatorname{tg} \psi}.$$
,

$$I_{d} = \frac{U_{d\alpha}}{R_{d}} = \frac{E_{d0} \cos \psi \, \text{tg} \, \psi}{X_{a} + X_{d}} = \frac{E_{d0}}{X_{a} + X_{d}} \sin \psi.$$
(32)
(31) (32)
$$E_{d0}$$

 $E_{d0}/(X_a+X_d),$

-

, ,

,

(. 13).

. 13.

-

,

,

-

-

$$X_d = X_d$$

. 11, .

,

, (

$$U_{d\alpha} = E_{d\alpha} - \Delta U_x = \frac{1}{\pi} \int_{\alpha}^{\alpha + \pi} \sqrt{2} E_2 \sin \vartheta d\vartheta - \frac{1}{\pi} \int_{\alpha}^{\alpha + \gamma} \Delta U_x d\vartheta =$$
$$= \frac{\sqrt{2}E_2}{\pi} \cos \alpha - \frac{1}{\pi} \int_{\alpha}^{\alpha + \gamma} X_a \frac{di_a}{dt} d\vartheta = E_{d0} \cos \alpha - \frac{I_d X_a}{\pi}.$$

, .

3.

1.

,

•

$$U_{d\alpha} = f(\alpha) \qquad -$$

,

 $L_d=0,$

•

,

(. . 1)

,

$$\alpha = 0 \qquad \qquad R_{d\min}.$$

. 1.

						1
					, .	•
		30	60	90	120	
	$X_d = 0$					
-	$X_{\alpha} = \infty$					
	$X_d = 0$					
	$X_{\alpha} = \infty$					

2.

	-			S_2	-
	$L_d \neq 0$.				. 1.
3.			,		-
	-				
		α.			-
	$\alpha_1 < \alpha$				
	i_d			•	
	$\phi = \alpha$.			. 2.	
					2

ϑ , .	i _d .,	i_d .,

_

4.

$$\begin{split} i_d(\lambda) &= 0. \\ 5. & U_d = f(I_d) & L_d = 0, \ L_s = 0 \\ &= 30 \div 60^{\circ}. \\ R_d & . & , \\ & U_d = f(I_d). & . 3. \\ \end{split}$$

1.	
2.	
2.1.	
2.2.	
2.3.	
2.4.	
2.5.	
	10
_	
2.6.	
3.	
4.	
5.	
6.	39
	······

4.