Лабораторная работа 1 ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК И ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

Цель работы: получение вольт-амперных и переходных характеристик полупроводниковых диодов, определение по ним статических и динамических параметров.

Описание виртуальной лабораторной установки и методики измерений

Лабораторная установка для исследований, предусмотренных содержанием работы, показана на рис. 1. Она содержит:

- функциональный генератор сигналов (Function Generator XFG1);
- двухлучевой осциллограф (Oscilloscope XSC1);
- модели реальных однотипных диодов;
- датчик V1 тока, протекающего через диод D1;

– идеальные источники переменного синусоидального I1 тока и постоянного тока. Амплитуда переменного тока 0,02 А, частота 1 кГц;

- ограничительное сопротивление R1, равное 3 Ом, и задающее прямой ток диода;

- измерительный пробник.

Рис. 1. Установка для исследований силовых диодов (а) и график ВАХ (б)

Снятие ВАХ диодов осуществляется в два этапа. На первом получают изображение ВАХ диодов на экране осциллографа следующим образом. Функциональный генератор сигналов XFG1 формирует переменное треугольное напряжение амплитудой 1 В, частотой 150 Гц. Отрицательная часть этого напряжения реализует режим обратного смещения диода D1, а положительная часть создает прямой ток диода. Импульсы прямого тока *i*_{D1}, следующие с частотой 150 Гц, преобразуются датчиком тока V1 в пропорциональное напряжение $u_A = i_{D_1} \cdot R_{V_1}$, где R_{V_1} – передаточное сопротивление датчика тока, поступающее на канал «А» осциллографа XSC1. Так как сопротивление R_{v_1} равно 1 Ом, то напряжение u_A численно совпадает с током исследуемого диода. В режиме развертки «А/В» при значениях прочих регулировок осциллографа XSC1, соответствующих рис. 1, на его экране воспроизводится изображение зависимости $u_A = f(u_D)$, численно совпадающей с ВАХ диода D_1 . При этом на правой полуплоскости экрана располагается прямая ветвь ВАХ диода D1 (рис. 1), а на левой полуплоскости – обратная (непроводящая) ветвь. Визирная линия отмечает на экране пороговое напряжение U_{TO} (точку перегиба BAX), составляющее примерно 0,6 В.

На втором этапе измеряются координаты точек прямой ветви ВАХ диода D_2 , идентичного диоду D_1 , путем задания с помощью источника тока I_2 значений прямого тока i_{D_2} и регистрации соответствующих им значений напряжения V(dc) измерительным пробником, подключенным в анодную цепь диода D_2 . Задавая значения прямого тока i_{D_2} , важно не пропустить точку перегиба ВАХ, предварительно измеренную с помощью визирной линии на экране двухлучевого осциллографа XSC1.

Для определения динамического сопротивления диода *D2* в режиме малых приращений токов и напряжений в различных точках прямой ветви BAX в состав виртуальной установки введен источник переменного тока *I1* частоты 1 кГц с амплитудой 0,02 A, малой в сравнении с величинами постоянного тока диода *D2*, задаваемого источником тока *I1*. Динамическое сопротивление определяется по показаниям измерительного пробника: $r_d=V_{(p-p)}/0,02$.

Для измерения координат обратной ветви ВАХ диода D_2 необходимо заменить в установке (рис. 1) источник прямого тока I_2 на источник обратного напряжения (источник тока I_1 из схемы исключить), изменять его величину и с помощью измерительного пробника регистрировать значения обратного напряжения V_{dc} и обратного тока I_{dc} диода D2.

Схема для снятия переходной характеристики запирания диодов приведена на рис. 2. Функциональный генератор сигналов XFG1 формирует последовательность импульсов напряжения прямоугольной формы с амплитудой 10 В и частотой повторения 150 Гц. Она периодически коммутирует диод D1 в проводящее и непроводящее состояние. Как видно из осциллограммы тока диода (рис. 3), при его²

щее состояние. Как видно из осциллограммы тока диода (рис. 3), при его коммутации появляется обратный выброс, длительность которого определяет время обратного восстановления t_{rr} .

Рис. 2. Установка для измерения динамических параметров силовых диодов (*a*) и осциллограмма коммутации диодного тока (б)

Эту длительность можно измерить путем установки скорости горизонтальной развертки осциллографа, равной 20 ns/div. Например, из осциллограммы на рис. 3 видно, что время рассасывания t_s зарядов у диода при обратном токе 33,57 A составляет 80 нс, а время спада обратного тока равно 75 нс. Таким образом, время обратного восстановления диода

$$t_{rr} = t_S + t_f = 80 + 75 = 155$$
 нс.

Заряд восстановления запирающих свойств диода определяется как

$$Q_{rr} = I_{rr} \cdot t_s + 0, 5I_{rr} \cdot t_f = 33,57 \cdot (80 + 0,5 \cdot 75) = 369$$
 мккул .
Заметим, что $Q_{rr} = Q_s + Q_f$,

3

где Q_s - заряд рассасывания неосновных носителей, Q_f - заряд спада обратного тока (рис. 4).

Рис. 4. Испытательная схема (*a*) и временная диаграмма спада обратного тока (*б*) диодов

Рабочее задание

1. Собрать схему виртуальной лабораторной установки (рис. 1) и выбрать из библиотеки компонентов диод 1N3064, ввести этот диод в состав установки взамен диодов D1 и D2 типа MUR2520, показанного на рис. 1 и рис. 2. Настройки генератора: амплитуда импульсов - 7 В, частота импульсов – 100 Гц.

2. Установить органы управления двухлучевым осциллографом (пример показан на рис. 1) и включить виртуальную лабораторную установку. На ВАХ, появившейся на экране, по горизонтали отсчитывается напряжение на диоде, по вертикали – прямой ток. С помощью визирной линии определите величину порогового напряжения диода – максимально возможное напряжение на диоде, при котором ток примерно равен нулю.

<u>Замечание:</u> осциллограф перевести в режим А/В, установить смещение по каналу А на уровне -1 дел., по каналу В на уровне -2 дел. для лучшей визуализации характеристики.

3. Снять по точкам прямую ветвь ВАХ диода D2, устанавливая последовательно источником прямой ток i_F диода в количестве 7 значений и измеряя пробником прямые напряжения U_F диода. Результаты измерений занести в табл. 2 и построить по ним график прямой ветви ВАХ.

4. Для указанных в табл. 2 значений прямого тока измерить с помощью пробника переменную составляющую ^V(*p*-*p*) прямого напряжения выпрямительного диода и рассчитать его динамическое сопротивление для этих значений прямого тока.

5. Заменить в схеме установки (рис. 1) источник тока I^2 на источник обратного напряжения. Снять по точкам обратную ветвь ВАХ диода D2, устанавливая этим источником значения напряжения U_r (табл. 2), и измеряя пробником обратный ток I_r . Результаты измерений занести в табл. 2 и построить график обратной ветви ВАХ для D2.

Таблица 2

if, A				
V_F, B				
U _{TO} , B				
<i>V_{(р-р), м}В</i>				
r _d , Ом (расчет)				
<i>U</i> _{<i>r</i>} , B				
<i>I_r</i> , мкА				

Результаты измерений и расчетов

6. Провести аналогичные измерения и построения для стабилитрона 1N4464 и диода Шотки 1N5820.

7. Собрать схему рис. 2, *а* для измерения динамических параметров диодов 1N3064 и 1N5820, установить органы управления осциллографом XSC1 (пример показан на рис. 2, δ); перевести генератор сигналов в режим формирования выходного переменного напряжения прямоугольной формы с амплитудой 3 В и частотой следования 150 Гц. Включить моделирующую установку и снять осциллограмму коммутации тока (рис. 3).

7. Подбором соответствующей скорости развертки получить осциллограммы переходного процесса коммутации тока диодов. Определить по ним время рассасывания t_s , время спада обратного тока t_f , время обратного восстановления t_{rr} и амплитуду обратного тока у диода; рассчитать заряд Q_{rr} . Результаты измерений и расчетов занести в табл. 3.

Таблица 3

	Параметры								
Диод	ts	t _f	t_{rr}	Qs	Q_f	Q_{rr}			
	нс			мкКул					
1N4461									
1N5820									

Результаты измерений и расчетов динамических параметров

Содержание отчета

1. Схемы установок (рис. 1 и 2).

- 2. Осциллограммы и графики ВАХ исследуемых диодов.
- 3. Таблицы 1, 2 и 3.
- 4. Осциллограммы переходных процессов запирания исследуемых диодов.